nos.data package¶
Submodules¶
nos.data.transmission_loss module¶
- class nos.data.transmission_loss.TLDataset(path: Path, n_samples: int = -1, v_transform: Literal['quantile', 'min_max', 'normalize'] = 'quantile')¶
Bases:
OperatorDataset
- class nos.data.transmission_loss.TLDatasetCompact(path: Path, n_samples: int = -1, v_transform: Literal['quantile', 'min_max', 'normalize'] = 'quantile')¶
Bases:
OperatorDataset
Transmission loss dataset, with bigger evaluation space.
- nos.data.transmission_loss.get_min_max_transform(src: Tensor) Transform ¶
- nos.data.transmission_loss.get_n_unique(df: DataFrame, n_samples: int = -1)¶
- nos.data.transmission_loss.get_normalize_transform(src: Tensor) Transform ¶
- nos.data.transmission_loss.get_tl_compact(path: Path, n_samples: int = -1)¶
- nos.data.transmission_loss.get_tl_frame(path: Path, n_samples: int = -1)¶
- nos.data.transmission_loss.get_tl_from_path(path: Path)¶
- nos.data.transmission_loss.get_unique_crystals(df: DataFrame) DataFrame ¶
nos.data.xdmf_to_torch module¶
- nos.data.xdmf_to_torch.get_array(data_dir: Path, element: Element) tensor ¶
Gets the first DataItem from a given element.
- Parameters:
data_dir – directory in which both the xdmf and h5 files are located
element – parent
- Returns:
array of all elements stored in the first DataItem for the given element.
- nos.data.xdmf_to_torch.xdmf_to_torch(file: Path) dict ¶
Converts a xdmf file to a dictionary with all values stored within it.
- Parameters:
file – path to the xdmf file (h5 file needs to be located in the same dir).
- Returns:
Dictionary containing topology, geometry, frequencies, and complex values.
Module contents¶
- class nos.data.TLDataset(path: Path, n_samples: int = -1, v_transform: Literal['quantile', 'min_max', 'normalize'] = 'quantile')¶
Bases:
OperatorDataset
- class nos.data.TLDatasetCompact(path: Path, n_samples: int = -1, v_transform: Literal['quantile', 'min_max', 'normalize'] = 'quantile')¶
Bases:
OperatorDataset
Transmission loss dataset, with bigger evaluation space.